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Influence of Calorimeter Heat Transfer
Gages on Aerodynamic Heating

Tupor SPRINKS*
Tazt Institute of Mathematical Physics, Edinburgh

Nomenclature

z = space variable in the mainstream direction

U = fluid speed in the z direction

l = a typical length for the flow

Re = flow Reynolds number based on this length [ and on
freestream conditions

7o(x) = wall skin friction

) = local fluid mass density

a{x) = rate of conductive heat transfer to the wall

h = local fluid total enthalpy

g = (1 — h/h), local nondimensional total enthalpy

a = coefficient in Eq. (2) for skin friction

Subscripts

e = evaluated external to the boundary layer (in main-
stream)

0 = evaluated at the wall

d = evaluated at a wall-temperature discontinuity

1 = evaluated at the front edge of a gage

2 = evaluated at the rear edge of a gage

x = based on the length z instead of on [

Analysis

HE center of a calorimeter heat transfer gage such as is

described by Rose and Stark! reaches, by design, after
a short time a temperature lower than that of the surrounding
model surface. It is desirable to find the effect of this
near-discontinuity in surface temperature on the aerodynamie
heating rate measured by the gage.

An analysis first proposed by Lighthill? which linearized
the boundary layer energy equation is useful here. The
linearization is better for small streamwise pressure gradient
and for large Prandtl number. Lighthill? analyzed only the
case of zero streamwise pressure gradient, although Illing-
worth? later analyzed the case of nonzero pressure gradient.
Only the constant pressure case is used here to illustrate the
influence of a nearly discontinuous wall temperature.

Solution of the linearized energy equation for a given wall-
temperature distribution results? in the following expression
for the heat transfer go(x) to the wall:
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(Note that (3)! = 0.8930.) Lighthill? indicates that the
accuracy of Eq. (1) may be improved by a suitable alteration
of the constant multiplier of its right-hand side.

Application to the Gage Problem

To find the effect of the nearly discontinuous surface-
temperature distribution associated with a calorimeter gage,
the practical temperature distribution is approximated by
one with a discontinuous decrease at the front of the gage
and with a discontinuous increase at its rear edge. Such a
distribution comprises a continuous one and one that is zero
everywhere except on the gage where it has a constant nega-
tive value. Since the energy equation had been linearized,
the results of applying Eq. (1) to each of these constituent
distributions in turn may be added to give the required solu-
tion. It also is apparent from Eq. (1) that the contributions
from any additional square-wave temperature distributions
may be added separately. Such contributions have no up-
stream influence.

One should realize from the energy equation? that the
assumed temperature discontinuity at the wall would result
in an infinite wall heat transfer rate at the point of discon-
tinuity. This invalidates Lighthill’s? linearizing assumption
at that point. However, the author considers that the solu-
tion offered here remains a good approximation for the local
heating rate, except at the discontinuity where the nature of
the temperature change needs exact specificaticn and an
excellent approximation for the averaged gage heating rate.

The wall skin friction for the constant pressure is assumed
to be given by

2ro(z)/ pe()u(z) = o Re, ™12 2)

in which @ = £, as given by Horwarth.* At x = x4, a jump
in o(gz) of goa now is allowed. Then in addition to the wall
heating rate arising from the continuous part of the wall-
temperature distribution, there is behind the point of dis-
continuity a contribution of magnitude é¢o(zx) given by
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The accuracy of Eq. (3) also may be improved by suitable
alteration of the constant multiplier of its right-hand side.
The infinite heating rate at the assumed temperature dis-
continuity is apparent from Eq. (3).

Consider now a calorimeter gage mcunted between x =
and z = z». The temperature function go(z) is taken as one
that is constant at go(0*) except on the gage where it is g
lower than elsewhere. In front of the gage the heating rate
is unchanged at go(z), the value due to g,(0*) alone. On the
gage the fractional increase in the wall heating rate is
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and behind the gage it is

woans -G -G
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In practice, an averaged heating rate of the gage is meas-
ured. . Eq. (4) is seen to produce a finite average, making
the present result physically acceptable. The averaged
error obtainable from Eq. (4) is seen to increase directly with
the temperature step and to be larger for a gage of small ex-
tent in comparison with its distance from the leading edge. .
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The assumption of a sharp temperature change is only justi-
fiable, however, when the gage is not very small.

This analysis confirms the importance of measuring only
the initial response of a calorimeter gage whose thermal prop-
erties differ considerably from those of the mounting surface.
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Limits on the Damping of Two-Body
Gravitationally Oriented Satellites

E. E. Zasac*
Bell Telephone Laboratories, Inc., Murray Hill, N. J.

This paper considers the conjecture that the
settling timme of a strictly gravity-gradient attitude
control system is limited to be of the order of the
settling time of a critically damped dumbbell.
The conjecture is shown to be true for a certain class
of gravity-gradient systems and, in particular, for
the gravity-gradient systems thus far proposed.
It also is shown that gravity-gradient systems out-
side this class may have arbitrarily fast settling
times. However, it is suggested that reliable
mechanization of such rapidly settling systems may
be difficult.

I. Introduction

N a previous paper,! the author considered the small mo-
tion damping of a two-body gravitationally oriented
satellite of the type proposed by Kamm.2 It was pointed out
that this was one of several passive or semipassive gravita-
tional schemes being considered for very reliable, long-life
satellites. The common feature of all the schemes is an
auxiliary inertia, either a gyro or a second rigid body, which is
attached to the satellite through a dissipative joint.

For the satellite considered in Ref. 1, a bound was found on
the pitch “asymptotic settling time,” that is, the 1/e settling
time of the most lightly damped mode. This was found to
be 51/4/2%(3)1/2 = 0.137 orbits. In this satellite, only a
simple spring-dashpot combination was assumed between
the two inertias. One immediately thinks of improving the
settling time by the use of more sophisticated control, say
by employing feedback. On the other hand, the bound on
the 1/¢ piteh asymptotic settling time of the roll-vee gyro
system of Refs. 3 and 4 is 1/(27) = 0.159 orbits—of the same
order as that of the system in Ref. 1. One might conjecture
that a natural bound of this order of magnitude generally ex-
ists for purely gravity-gradient schemes.

For example, suppose that the auxiliary inertia is a second
rigid body. The satellite is desired stable with respect.to a
rotating, earth-pointing reference frame. Tn this frame, the
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satellite’s natural frequency can be no higher than (3)/2Q
(Q is the orbital frequency), corresponding to the natural
frequency of a dumbbell-shaped body. Likewise, the natural
frequency of any auxiliary fluid or rigid body inertia system
also is less than (3)'/2 @, and so the basic system one starts
with has the lumped representation shown in Fig. 1, with two
inertia systems of limited frequencies. (For convenience, a
lineal rather than a rotatory model is shown.) Only if the
satellite grabs onto the rotating, earth-pointing reference
frame by some means other than gravity gradient can these
frequencies be raised. One now provides torques between
the inertias to damp the system as rapidly as possible.
However, these torques are applied ounly befween the inertias.
Tt would seem likely, therefore, that the limited natural
frequencies of the satellite and the auxiliary inertia would set
the time scale of the oscillation. One thus might conjecture
that it would be difficult to attain settling times much faster
than 1/[2#(3)1/2] = 0.092 orbits, corresponding to the most
rapid (eritical) damping of a single-degree-of-freedom system
with the limiting natural frequency of (3)' /2.

It is shown in this paper that the conjecture is true for a
certain class of linear systems. Systems in this class have
resistive velocity-dependent torques (as defined in the next
section). In addition, torques proportional to the bodies’
displacements are applied between the inertias. For example,
all systems with a single viscous damper and displacement
proportional torques between the inertias fall within this
class. The class includes, in particular, all the gravity-
gradient schemes considered in Refs. 1, 2, and 5. The
compliant dumbbell analyzed by Paul® is not of this class.
However, by the methods presented, the conjecture easily is
shown to hold for Paul’s system as well. The conjecture
thus, in faect, is true for all the gravity-gradient schemes
proposed in Refs. 1-6.

Hence, to obtain a two-body gravity-gradient satellite
that damps down substantially faster than these proposed
systems, one must search outside the class for which the
conjecture holds. Indeed, as shown in this paper by an
example, it is possible to attain arbitrarily fast settling times
outside of this class. However, the system shown in this
paper to have arbitrarily rapid settling times also is shown to
be intolerably sensitive to changes in system parameters.
It goes without saying that the mechanization of any practical
damping system must be reliably long-life so as not to negate
the basic gravity-gradient reliability. Whether this is pos-
sible for a system outside the class considered is an open
question.

II. Systems for Which the Conjecture Holds

Fourth-order system

Consider the system shown in Fig. 1. This is a schematic
of the pitch motion of a two-body, gravity-gradient system.
The bodies 4; and A, are assumed linked at their mass
centerst so that the gravity-gradient spring, &y = 3(B; —
C)Q?, acts between the satellite of inertia A, and ground of
the rotating reference frame. (B; and C; are principal
inertias of the satellite.) Likewise, the gravity-gradient
spring k. = 3(B: — C2)Q? acts between the auxiliary inertia
and ground. Let a torque T that is a linear function of the
velocities and displacements act between the inertias 4; and
A21

T = g1 — 0992 + 1y — Cofe

Depending on the values of a;, as, ¢;, and ¢, this form of the
torque can represent a variety of mechanizations. For

t As indicated in a footnote of Ref. 1, if the mass centers are
noncoincident as in Kamm’s vertistat, only a trivial change in the
differential equations occurs. In the present case, this does not
affect the results obtained.



